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Abstract. We discuss the computational complexity of the perturbative evaluation of scattering amplitudes,
both by the Caravaglios—-Moretti algorithm and by direct evaluation of the individual diagrams. For a
self-interacting scalar theory, we determine the complexity as a function of the number of external legs.
We describe a method for obtaining the number of topologically inequivalent Feynman graphs containing
closed loops, and apply this to 1- and 2-loop amplitudes. We also compute the number of graphs weighted
by their symmetry factors, thus arriving at exact and asymptotic estimates for the average symmetry
factor of diagrams. We present results for the asymptotic number of diagrams up to 10 loops, and prove
that the average symmetry factor approaches unity as the number of external legs becomes large.

1 Introduction

With the advent of high-energy colliders such as LHC
and TESLA, high-multiplicity final states will become ever
more relevant, increasing the need for efficient evaluation
of complicated multi-leg amplitudes. Performing such cal-
culations by a direct evaluation of all relevant Feynman
graphs is computationally hard in the sense that the num-
ber of graphs increases with N roughly as N!, the total
number of external legs. For example, the 2 — 8 purely
gluonic amplitude in QCD contains 10.5 million Feynman
graphs at the tree level; and one may expect that loop
corrections (described by many more diagrams) will also
be important. A computational breakthrough has been
achieved by the introduction of the Caravaglios—Moretti
(CM) algorithm [1], in which the Schwinger—Dyson (SD)
equations of the theory, rather than their decomposition in
individual Feynman diagrams, are employed, thus leading
to a complexity of order ¢V (where c is a constant). Such
methods, however, have to date only be formulated for the
Born approximation. Barring a revolutionary new method
for solving the SD equations including loop effects®, the
most straightforward approach would seem to use the ver-
tices of the effective, rather than those of the bare, action.
In such an approach the effective vertices with up to IV legs
have to be employed, which increases the complexity of the

* Research supported by the EU contract no. HPMD-CT-
2001-00105

# e-mail: ernsteij@sci.kun.nl

b e-mail kleiss@sci.kun.nl
e-mail: lazopoul@sci.kun.nl

! In informal discussions, all the experts agree that this would
be a tremendous advance — but no-one has a clue on how to
approach it.

c

CM algorithm. In order to assess the relative merit of the
CM algorithm, it is therefore relevant to compare the com-
putational complexity of the CM approach to the number
of higher-order Feynman graphs. In Sect. 2, we calculate
the number of individual diagrams, not weighted by their
symmetry factors, in 0-, 1- and 2-loop level for four models
of a self-interacting scalar theory. We also give the number
of 1-particle irreducible graphs needed in the sequence. In
Sect. 3 we give the number of diagrams, now weighted by
their symmetry factors, for the four models, as they occur
directly from the path integral. Section 4 contains asymp-
totic estimates, in the number of external legs, for weighted
and unweighted graphs. In Sect. 5 we proceed in calculating
the computational complexity of the CM algorithm in one
and two loops. In Sect. 6 we compare the efficiency of the
CM algorithm to that of the individual-diagram approach.

2 Counting diagrams

We consider a self-interacting scalar theory with arbitrary
vertices of the type ¢*, k = 3,4,... We define the “poten-

tial”
k

Vig) =Y e %, (1)

k>3

where ¢, is 1 if the ¥ interaction is present; otherwise it
is zero. We shall specialize to a number of cases:

¢ theory : V(o) = ¢*/6,
©* theory : V(p) = ¢1/24,
gluonic QCD : V() = 3/6 + /24,
Vip) =

effective theory : V(¢ —1—p—¢%/2; (2
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but alternative theories are easily implemented.

2.1 Counting tree diagrams

Tree diagrams can be conveniently counted by means of the
SD equation. This hinges on the fact that, at the tree level,
all diagrams have unit symmetry factor. The counting of
tree diagrams has been described in detail in [2—-4], and
here we briefly recapitulate these results. Let us denote by
a(n) the number of Feynman tree diagrams contributing to
the 1 — n amplitude, and define the generating function

do(z) =Y L an). (3)

po(z) = @ (4)

By considering the alternatives when entering the blob
from the left, we easily see that

Q. (5)

where the right-hand side contains k& blobs. This implies
that ¢g(z) obeys the equation

$o(x) =z +V'(do(x)). (6)

Since V(i) is of order O(¢?), this SD equation can easily
be iterated starting with ¢g(x) = 0, and the desired a(n)
can be read off once the iteration has proceeded far enough.
Notice that

V'(W))l%,
VO 00(a)) = S SV G@) 023). (1)

so that the higher derivatives of V(¢o(x)) are completely
expressed in terms of ¢((z) and its derivatives.

The asymptotic behavior of a(n) for large n is deter-
mined by the singularity structure of ¢g(x). Since ¢o(x)
cannot reach infinity for finite values of z, the singularities
take the form of branch cuts, where ¢o(z) remains contin-
uous but (as it turns out in all cases studied so far) ¢} (x)
diverges. We have

dz
x=d¢o—V'(d) = ——=1-V"(d), (8)
doo
and the dominant singularity is reached for that value ¢,
for which V" (¢.) =1 and

Te = P — V/(ch) (9)

E. van Eijk et al.: Counting loop diagrams: computational complexity of higher-order amplitude evaluation

Table 1. The relevant numbers for the four case theories;
see (11)

theory e T C
©° 1 1/2 V2
o NG) 8/9 91/4
gQCD  —-1++v3 V3-4/3 (4/3)"/*
effective log(2) 2log(2) — 1 1

is closest to the origin?. This value is always located on the
positive real axis, where ¢g(z) is concave and monotically
increasing for x < x.. Taylor expansion then gives the
structure of the branch cut:

_ 2@ (1 _ x>1/2 . (10)

@)~ 0= [ FEgy ! o

from which we conclude that, for large n,

a(n) T nl C n!
2nV 3 (p.) n3/2xn  /An n3/2gn 12"

(11)
with C = /2/V3)(¢.). In Table 1 we give the relevant

numbers for the four case theories.

2.2 Counting 1-loop diagrams

When closed loops are introduced, an SD-type equation
itself cannot be used to count the number of topologically
inequivalent graphs. This stems from the fact that the SD-
type equations are local in the sense that they only consider
(in a recursive manner) what happens at a single vertex of
a diagram, while the topology of a graph containing closed
loops is a global property of the whole graph. Instead,
one has to settle for an order-by-order and topology-by-
topology treatment.

Every 1-loop diagram can be viewed as a single closed
loop, to which tree-diagram pieces (which we call leaves)
are attached. From

(¢o(x)) =v, (12)

where the sum has k blobs again, and we have introduced
the shorthand notation v, we see immediately that the
number of 1-loop graphs can be completely expressed in

2 Here, we disregard the possibility that there are several
such values, arising from a symmetry of the potential such as
in the case of theories with only ¢™ interactions (m > 4).
These cases are treated in detail in [6] and references therein.
The asymptotic results given here are “coarse-grained”.
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terms of v. The generating function of L;(n), the number
of all 1-loop non-vacuum graphs with precisely n external
legs, is given by attaching leaves to a closed loop in all
possible ways:

£1($) =

|
(]
&
=

SORE O

O
+ @‘ + O@O +... (13)
&

The standard combinatorics for collecting the various ex-
ternal legs into leaves and inspecting the symmetry prop-
erties of the resulting graphs show that a 1-loop graph
with m leaves has precisely the “natural” symmetry factor
1/(2m), with two important exceptions: the graphs with
one or two leaves have an additional symmetry since, for
the 1-leave graph, the loop line may be flipped over, and
for the 2-leave graph the two internal loop lines may be
interchanged. This leads us to the strategy for computing
the number of topologically inequivalent graphs.
(1) Write down the vacuum graphs, with their “natural
symmetry factor”;
(2) attach leaves in all possible places;
(3) multiply by the order of the residual symmetry left over
after the particular attachment.

Performing this program for the 1-loop case, we find

2 2 1
ﬁl(fﬂ) = 57}4’ ZUQ + Z %Um
m>3
1

1 1
= §'U+ Z'UQ* §log(17’0)

= Lo Ly D).

2 4 2 (14)

The number of 1-loop diagrams with n external legs is given
in Table 2 for some theories.

2.3 Counting 2-loop diagrams

At the 2-loop level, there are three topologically different
vacuum diagrams. These are

1 1 1

: -, b: — : -
: OO 8’ @ 12 ¢ Q_Q g’
(15)
where we have indicated their “natural” symmetry factor.

Since these graphs contain vertices, we must also accom-
modate leaves attaching themselves to vertices:
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Table 2. The number of 1-loop diagrams with n external legs

N o0 ol
1 1 0
2 2 1
3 7 0
4 39 7
5 297 0
6 2,865 145
7 33,435 0
8 457,695 6475
9 7,187,985 0

10 127,356,705 503,440

N gQCD effective
1 1 1
2 3 3
3 14 15
4 99 111
5 947 1,104
6 11,460 13,836
7 167,660 209,340
8 2,876,580 3,711,672
9 56,616,665 75,461,808

10 1,257,154,920 1,730,420,592

(16)

In case no leave happens to be attached, the expression
for the vertices read, of course, V) (0) and V4 (0), re-
spectively. This prohibits, for instance, the occurrence of
a 3-point vertex in a ¢* theory. For each of the graphs we
have to admit the possibility of zero, one, or more leaves on
each line, and that of leaves on any vertex. For the determi-
nation of the residual symmetries it must be remembered
that lines without leaves on them may be interchanged, and
vertices without leaves may be interchanged, provided the
“anchoring” of the graph to the external legs contained in
every leaf present permits such an interchange. As a simple
example, the vacuum graphs themselves, without any leaves
on them, have a residual symmetry of precisely 8, 12, and 8,
respectively, so that indeed they will be counted precisely
one time. For graph (a) there are now 2 x 3% = 18 cases to
be considered, and for (b) and (c) we have 22 x 33 = 108
cases. The results for their generating functions are

)

o 1
£5(@) = SV (9)

1 2
<1+v+) +4
1—w

P Lo (s 1)
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Table 3. Results for total number Lz (n) of 2-loop graphs with
precisely n external lines for our specific theories; see (18)

3

(N

N ® ®
0 2 1
1 3 0
2 10 3
3 58 0
4 465 42
5 4,725 0
6 57,900 1,485
7 829,080 0
8 13,570,515 97,335
9 249,789,015 0

10 5,105,239,650 10,210,200

N gQCD effective
0 3 3
1 6 7
2 29 35
3 217 273
4 2,214 2,876
5 28,365 38,034
6 436,780 604,320
7 7,847,420 11,202,156
8 161,048,720 237,187,552
9 3,715,400,500 5,645,523,408

10 95,156,789,700  149,180,360,320
2
+ (V(3>(0)) (2+3(1+v)+(1+ v)?’)} ,
(C) 1 (3) 2 1 1 2
£(@) = 5 (v ((b)) — (1ot —
2
+4(v<3>(0)) (1+v)} . (17)

The total number La(n) of 2-loop graphs with precisely n
external lines is therefore given via

La(e) = 37 Z o) = £ @)+ £ (0)+£8 (@) . (18)

n>0

In Table 3 we give again the results for our specific theories.

The extension to three or more loops is a matter of
establishing the vacuum diagrams. For the 3-loop case,
however, there are 15 such graphs. Dressing them with
leaves leads to a larger number of cases to be considered,
ranging from 54 to 11,664 per graph.

2.4 Counting amputated diagrams
Loop diagrams containing tadpoles or seagulls are constant

contributions to lower-order diagrams and are usually ig-
nored. Moreover, diagrams containing self-energy loops on
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Table 4. Number of amputated 1-loop diagrams for our test
theories

N ® ot gQCD effective
3 1 0 4 4
4 12 3 39 43
5 117 0 437 502
6 1,290 75 5,800 6,916
7 16,425 0 90,450 111,660
8 239,400 3675 1,627,640 2,077,944
9 3,944,745 0 33,258,715 43,883,696

10 72,627,030 303240 761,405,820 1,037,955,824

external legs are absorbed, during the renormalization pro-
cedure. Removing such diagrams from the above results is
a simple task. One has to subtract all contributions from
(a) diagrams with loops carrying zero or one vertex, and
(b) diagrams carrying two vertices one of which is connected
with an external leg while the other is a single propagator.

For the 1-loop case one has to subtract the first graph
in (13), as a set of tadpole or seagul diagrams, as well as
a contribution from graphs of the form

-(O-e

With these modifications the generating function reads

La(z) = —%v+ %zﬂ - % log(1—v) — 260(x)V(0). (19)

The number of amputated 1-loop diagrams for our test
theories is given in Table 4.

For 2-loop diagrams one has to consider separately each
vacuum graph. All graphs containing loops with less than
two vertices should be removed, as well as a variety of
special cases which lead to non-amputated diagrams.

The generating functions for each of the three basic
topologies becomes

8 (1—v)?
R yAC)) (O)V(s)(o)x%(x)
£ () = %2 {(V(B)(%)f (6 - 12(1;1+_51v; _ %3)]
1

2 6—23 2 2 3 4
(V(3>(0)) {129@04— vty }

12 1—-wv
~ (VO ©) 260(x) ~ VOOV (1)

—VE0)VD(0)2260(2) ,

L‘gc)(x) = é [(V(3)(¢))2 m] (20)
v — v 1'2
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Table 5. Exact number of 2-loop connected amputated dia-
grams for our test theories

N o° ol
3 4 0
4 63 9
5 870 0
6 12,945 460
7 212,940 0
8 3,874,815 35,315
9 77,605,290 0

10 1,700,078,625 4,090,800

N gQCD effective
3 28 37
4 457 600
5 7,285 9,760
6 128,675 177,160
7 2,552,165 3,617,824
8 56,538,055 82,588,784
9 1,387,411,690  2,089,438,256

10 37,407,699,175  58,096,995,744

Table 6. Numbers resulting from (21)

3 4

N %) © gQCD effective
1 1 0 1 1
2 1 1 2 2
3 1 0 4 5
4 3 3 12 17
5 12 0 57 83
6 60 15 390 557
7 360 0 3,195 4,715
8 2,520 315 30,555 47,357
9 20,160 0 333,900 545,963

10 181,440 11,340 4,105,080 7,087,517

The exact number of 2-loop connected amputated di-
agrams for our test theories is given in Table 5.

2.5 Counting 1PI diagrams

The same methods as above can easily be employed in
order to compute the number of 1-particle irreducible (1PT)
diagrams. We simply restrict ourselves to the 1PI vacuum
bubbles; and, since 1PI diagrams cannot have any vertex
in their leaves, we simply replace ¢g(x) in the arguments
of V, VB3 V® by x. For the generating function of
the 1PI 1-loop diagrams, we therefore have

1 1
7w+7

1
LiP(z) = 5 4w27 3 log(l1—w), w=V"(z). (21)

The resulting numbers are given in Table 6.
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Table 7. Same as Table 6; now see (22)

N 3 ot gQCD effective
0 1 1 2 2
1 1 0 3 4
2 2 2 9 13
3 7 0 40 62
4 36 12 265 410
5 240 0 2,230 3,499
6 1,860 225 22,485 36,213
7 16,380 0 261,135 435,852
8 161,280 8,295 3,418,695 5,944,000
9 1,753,920 0 49,712,670 90,309,029

10 20,865,600 481,950 794,102,400 1,510,208,963

At the 2-loop level, we similarly find

1 2
(1+w+ 1_) +4

1 3 1
—v® (2 |2
+12 (x) + T o +

1 1 4
(@) = V(@)

1
+EV(3)(0)2 [2+3(1 + w)

Numbers are given in Table 7.

+(1+w)?] .

3 Counting with symmetry factors

The counting of diagrams including their symmetry factors
is a somewhat simpler task, which can be performed on the
basis of the path integral itself. In [5] this has been discussed
in detail. However our approach here is somewhat different.
One can expand the generating function of the number of
connected diagrams perturbatively around ¢ = 0 and get
a series in = (the source). Or, alternatively, one can expand
perturbatively around the tree level 1-point function ¢ =
¢o. This shift eliminates the source x in favour of the tree
level 1-point function ¢g(z), and reveals the vacuum graph
dressing procedure that we employed above.

3.1 Counting diagrams with symmetry factors

Consider the generating function for the number of discon-
nected diagrams of a scalar theory with arbitrary couplings
and a source x:

20) =N [dpexn (-4 (56 - Vie +av) ). (3

with N = 1/v/2nh. Expanding around the tree level ap-
proximation ¢ of the 1-point function, i.e. setting ¢ —
oo + ¢, and making use of the Schwinger—Dyson equation
for ¢o(z) gives

Z(z) = N exp (—S(¢0 xd)o)/dgpe #5(0) (24)
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with

Sy = L e S v B )
n=3 :

The generating function of the number of connected dia-
grams is then

W (z) = hilog(Z(x))

(26)

—S(¢o) + x¢o + hlog (N/dspe_}l’z,é(‘m) _

We see that it can be seen as a sum of the tree level part plus
higher-order corrections. These corrections can be written
as the generating function for the vacuum diagrams of a
theory with action S(). The Feynman rules corresponding
to this action can be read off directly:

(1) % = ¢y, for every propagator.

(2) V() () for every n-point vertex.

Given the potential V' (¢) of the theory one can expand
the vertex terms in the exponential of (26), calculate the
Gaussian integrals and arrive at an expression for W(z)
that contains only V" (¢o(z)) and its derivatives. In this
way, given the tree level 1-point function of the theory, one
finds the number of graphs weighted by their symmetry
factors to arbitrary order.

Writing W(z) in an i expansion

W (z) = Wo(x) + AWy (x) + B2 Wa(x) + ... (27)

and, performing the integral and collecting together the
terms of the same order in /i, we see that the 1-loop diagrams
are generated by
Wie) = 21 ! (28)
z)==log| ————
R CE I
We can also find the generating function for the 2-
loop diagrams

1 V®(g) 5 VB (g0)V® (o)
8 (1-V"(¢0))*> 24 (1-V"(¢0o))?

The factor % in front of the first term is the symmetry
factor of the only 2-loop vacuum diagram with a 4-vertex
(see (15a)). The factor 2 = i + 75 is the sum of the
symmetry factors of the two vacuum diagrams with two
3-vertices (see (15b,c))3.

Writing the derivatives V(™) (¢g) in terms of derivatives
of ¢g (which can be done by differentiating the Schwinger—
Dyson equation for ¢g) one arrives at
BN,

8 (¢0)? 6 (4)°

In Table 8 we give results for our four case theories in
one loop.

Wa(x) =

(29)

Wa(x) (30)

3 In fact one could even avoid performing the integral since the
generating function for N loops is simply the sum of the vacuum
graphs with N loops weighted by their symmetry factors using
the Feynman rules for the S (¢) action given above. However,
this presupposes that one knows what the symmetry factor of
the specific vacuum diagram is.
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Table 8. Results for our four case theories in one loop; see (30)

3 4

N @ %) gQCD effective
1 1/2 0 1/2 1/2
2 1 1/2 3/2 3/2
3 4 0 15/2 8
4 24 7/2 57 63
5 192 0 1,149/2 658
6 1,920 80 7,230 8,568
7 23,040 0 218,175/2 133,676
8 322,560 3,815 1,919,190 2,430,816
9 5,160,960 0 77,146,125/2 50,484,016

10 92,897,280 31,0940 871,927,770  1,178,963,856

Table 9. Same as Table 8: results for the four theories now in

two loops
N o° ol
1 5/8 0
2 25/8 2/3
3 175/8 0
4 1,575/8 149/12
5 17,325/8 0
6 225,225/8 1,535/3
7 3,378,375/8 0
8 57,432,375/8 111,755/3
9 1,091,215,125/8 0
10 22,915,517,625/8 12,672,800/3
N gQCD effective
1 31/24 17/12
2 25/3 19/2
3 1,777/24 527/6
4 5,057/6 1,037
5 280,735/24 44,726/3
6 1,149,515/6 252,734
7 86,813,545/24 14,808,232/3
8 464,096,885 /6 109,143,424
9  44,344,732,495/24  8,085,390,392/3
10 292,590,237,275/6 73,514,104,288

The results for the four theories in two loops are again

collected in Table 9. Both in the 1- and 2-loop cases an
intriguing pattern of denominators is apparent for large N
values, which seems to persist (we have checked this for N
up to 50).

The above procedure can easily be extended to higher-
loop amplitudes as well, but since we have not computed
the unweighted diagram sums we defer this discussion to
the case of asymptotically large N.

3.2 Counting 1PI graphs

The generating function for the 1-particle irreducible di-
agrams of a theory weighted by their symmetry factors
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Table 10. Number of irreducible diagrams weighted by their
symmetry factors in the 1-loop case for the four test theories

3 4

© o) o3+ ot effective
N=1 1/2 0 1/2 1/2
N=2 1/2 1/2 1 1
N=3 1 0 5/2 3
N=4 3 3/2 21/2 13
N =5 12 0 57 75
N =6 60 15 390 541
N=7 360 0 3,195 4,683
N =38 2,520 315 30,555 47,293
N=9 20,160 0 333,900 545,853
N =10 181,440 11,440 4,105,080 7,087,261

Table 11. Number of irreducible diagrams weighted by their
symmetry factors in the 2-loop case for the four test theories

3 4

%) P ©® + ¢ effective
N=1 1/4 0 2/3 19/24
N =2 1 5/12 41/12 101/24
N=3 5 0 89/4 691/24
N =4 30 21/4 709/4 5765/24
N =5 210 0 1,660 56,659/24
N=6 1,680 135 17,865 64,0421/24
N=7 15,120 0 217,035 8,178,931/24
N=38 151,200 5,775 2,936,745  116,422,085/24
N=9 1,663,200 0 43,787,520 1,827,127,699/24
N =10 19,958,400 368,550 713,163,150 31,336,832,741/24

can be obtained by the same prescription by substitut-
ing ¢9 = x. Now, however, we have to take into account
only the 1PI vacuum diagrams. In the 1-loop case the only
vacuum graph is 1PI and the generating function is

Wilo) = 1o (31)

In the 2-loop case we have to take into account the vacuum
graph with one 4-vertex (see (15a)) and only one of the
two vacuum graphs with three vertices (see (15b)) since the
other one (see (15c)) is not 1PI. This alters the symmetry
factor from 25—4 to % We get then

1 V®(a)
W =S )

1 VO (z)VE) ()
5 T 192 (1 _ V”(l‘))3 )

(32)

We give in Table 10 the number of irreducible diagrams
weighted by their symmetry factors in the 1-loop case for
the four test theories.

We give in Table 11 the number of irreducible diagrams
weighted by their symmetry factors in the 2-loop case for
the four test theories.
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4 Asymptotic estimates

It is fairly easy to estimate the number of diagrams, both
with and without their symmetry factors, for asymptoti-
cally large N. As before, the asymptotic behavior of these
numbers is governed by the analytic structure of their gen-
erating functions close to that singularity which is closest
to the origin (that is, around x ~ z.). There, we have

1/2
Gyl ~ SO a2 2 0= (2/V ()"

(33)
where z., ¢, and C again depend on the theory. Let us first
concentrate on the 1-loop diagrams. Since v = 1 —1/¢} ()
has a square-root branch cut at the singular point, log(1—v)
is more singular than v or v2, and we have

Ly(x) ~ %log (2\/336'7—:6) =@, (349)

We conclude that, for 1-loop diagrams, the average sym-
metry factor of a given diagram is asymptotically equal to
1. The number K;(N) of graphs contained in the 1-loop
N-point amplitude is asymptotically given by

1 1 NI

BN~ oy W

(35)
To illustrate the convergence of the weighted number of
graphs to the unweighted number, we give the ratio of the
coefficients of % in ESS) (2) to those of L1(z) as a function
of N below, for the pure ¢? theory. The other cases show
a similar behavior?, in which the asymptotic regime is ap-

proached as 1/v/N: this can also be easily checked from the
exact form of L1 (x) close to the singularity; refer to Fig. 1.

2.5

0.5

o 10 20 30 40 50

Fig. 1. Exact form of £1(x) close to the singularity

4 For the pure ¢* theory, this holds in the “coarse-grained”
approximation [6].
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Table 12. First coefficients wy,
L wr, L wr,
2 5/48 7 19675 / 6144
3 5 /64 8 1282031525 / 88080384
4 1105 / 9216 9 80727925 / 1048576
5 565 / 2048 10 1683480621875 / 3623878656
6 82825 /98304 11 13209845125 / 4194304

The asymptotic results for the higher-loop amplitudes can
be established by the following reasoning. The leading con-
tribution from each leave-dressed vacuum diagram is given
by that part that has the highest degree of divergence as
r — x.. From each line in the vacuum graph, this is a factor
1/(1 —v) = ¢((z). Furthermore, from each k-point vertex
in the vacuum graph the leading contribution comes from
the limiting behavior of V*)(¢q(x)). Now, it is easily seen
that, as * — x.,

VE (¢o(z)) ~ = V® (gg(z)) ~ 0,

— k>4. (36)
We conclude that the leading behavior of the number of un-
weighted graphs is given by those vacuum graphs that con-
tain only 3-point vertices. To get the number of unweighted
diagrams at the L-loop level, therefore, we first compute
the normalized path integral for the pure ? theory, using
the usual perturbative interchange between expansion of
the potential term and integration:

o0 A
Z=N [ d -z
/soexp< 5% +6s0>
— 00

B (6n)! A2\"
-2 (2n)!(3n)!(576)" (u?’>

n>0

(37)

The sum of all connected vacuum diagrams with interac-
tions is then given by

W = log(Z), (38)

in the expansion of which the L-loop contribution (L > 2)is
given by the term with A2 2. In this expression, it suffices
to replace A by 2/C? and u by 1/¢}(x). The result is

W:Z wy 1 (xc —x

L>2

)3(17[‘)/2. (39)

The first coefficients wy, are given in Table 12. The asymp-
totic result for K7, (IV), the number of unweighted diagrams
contributing to the L-loop n-point amplitude is therefore
given by

I'(N+3(L—

(Ig/2c) L-1

For the number of L-loop graphs weighted by their sym-
metry factors we may employ the following formulation of

D)

e r@- D)

(40)
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the SD equation:

SR

{np,q}=>0 p,¢20

@)
<q+1)¢q> ’

(41)
where the bracketed superscripts denote derivatives, and

Z(p+(I)np,q:La m:1+Z(Q+1)np,q~

p,q p,q

(42)

The successive expressions for ¢, () in terms of lower-loop
ones can straightforwardly be worked out. For L = 1,2
these have been given in the previous section. If we now
put in the approximate form of ¢g(z) given in (10), it is
easily checked (at least up to L = 10) that the expression
for W is reproduced. Note that in this approximation the
fourth and higher derivatives of V(¢g) vanish, so that (41)
is actually more complicated than need be: nevertheless,
by using the next-to-leading expression

do(z) ~ dpo — Clzc — 37)1/2 —C'(we — ),
it can also be checked that, indeed, the subleading behavior
of ¢o(x) shows up only in the subleading terms in K (N).
We conclude that as N — oo, the average symmetry factor
of any Feynman diagram approaches unity.

(43)

5 Complexity of the
Caravaglios—Moretti algorithm

5.1 Introduction

The CM algorithm, as first explicitly given in [1] (and earlier
implied by [7]), consists of the computation of subampli-
tudes with one off-shell leg, the other legs corresponding
to on-shell external legs of the transition matrix element.
For tree diagrams, these subamplitudes can be unambigu-
ously specified by the particular set of external momenta
involved because of momentum conservation. For detailed
descriptions, we refer to [1,6,8]: here, we are only interested
in the combinatorics of the algorithm.

5.2 Complexity for tree level computations
in any theory

We assume an N-particle process, and set K = N —1. Each
subamplitude can then be encoded by a binary string with
N bits, each referring to a given external particle. The
bit is set to 1 if its external leg is involved in the sub-
amplitude, and to 0 otherwise. For instance, the string
(1,1,0,1,1,0,0,0,...,0,0) denotes that subamplitude in
which the external particles with labels 1, 2,4 and 5 are com-
bined, using the vertices of the theory, into a single off-shell
momentum. By the same convention, a string with a single
1 refers to the Feynman rule for a single external particle (a
spinor or antispinor for fermions, a polarization vector for
vector particles, et cetera). The CM algorithm combines
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(13090’0’030)

(1,1,0,0,0,0) (0,1,0,0,0,0)

(171’171’170) (0’0’1’0,0’0)
(0,0,0,1,0,0)
(0,0,0,0,1,0)

Fig. 2. Example of decomposition of string of K bits

(0,0,1,1,1,0)

subamplitudes into successively more complicated ones,
culminating in the string (1,1, 1,...,1,1,1,0), which, after
multiplying with the external factor (0,0,0,...,0,0,0,1)
gives the final answer for the amplitude. It is clear that
of the N external particles, one can be left out of the
combinatorics since it has to be included only at the very
end. The combinatorial problem is, therefore, to determine
the number of ways to decompose a string of K bits. An
example of a possible decomposition is in Fig.2. In this
figure we have indicated the strings corresponding with
the external legs and the various subamplitudes. The pos-
sible decompositions depend on the theory in question: the
presence of an (m+ 1)-point vertex in the theory allows for
a decomposition into m smaller strings. In this paper, we
shall only deal with theories of a single self-interacting field
(gluonic QCD being an example): extensions to more fields
are fairly straightforward. In recent implementations such
as HELAC (]9]), this decomposition can be recognised ex-
plicitly.

Let us first consider a subamplitude’s string with n 1’s
being decomposed into m smaller strings, each with at least
one 1. This happens when, in the SD equation, an (m+1)-
point vertex is encountered. The number of inequivalent
decompositions, denoted by ¢,,(n), is given by

1 n!
em(n) = m! Z . nilnal ... ny! (44)

where, of course, ny + no + ...+ n,, = n. Note that the
above equation assumes that all the subamplitudes contain-
ing ny,n9,...,n, external momenta exist. This is always
the case when a > interaction is present in the theory®
but it is not true for a pure ¢* theory for example. Then
one has to introduce a factor that cancels the terms com-
ing from combinations of non-allowed subamplitudes. We,
nevertheless, proceed with our program to find a gener-
ating function for effective theories that always contain a
3-point vertex. We find

Z %cm(n) S (e® —1)™ .

n>0

(45)

Now, out of all bit strings of size K, there are precisely
K!/n!l(K —n)! strings containing precisely n 1’s. The total

5 Because then there is always the possibility of constructing
a subamplitude containing nj, external momenta by combining
a subamplitude containing nr — 1 momenta with an external
momentum in a 3-point vertex.
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number of decompositions involving (m + 1)-point vertices
is therefore

ult) =3 (K ento, (16)
n>0
so that
K 1
gn(0) = 3 T fn(K) = e (@ = )" (47)

K>0

In the simple case of a pure (> theory we therefore have

1
ga(x) = 5 (€% — 2e*" +€”)
oK1
=) K3 (3% —28+1 4 1), (48)
K>0

so that the number of decompositions necessary to arrive
at an N-point amplitude is given by

1y 1.y 1
o A= LS
60 2% T3

For a theory with both ¢? and ¢?* interactions such as
gluonic QCD, we find a total of

1 1
4N _ 29N
24 4 i 3

1

decompositions. In QCD at the tree level, an improvement
is possible. We can decompose the gluonic 4-vertex into
two 3-vertices by employing an auxiliary field, as explained
for instance in [6]. This brings the complexity down from
4N to 3%, a worthwhile improvement for large N. It is
not to be expected, however, that this will be possible in
higher orders. The effective action, therefore, will contain
(m+1)-vertices for all m > 2, and the generating function
is therefore

F(z) = Z gm(z) =exp (e® —1+x) —exp(2z). (49)

m>2

In Table 13 we give the number of decompositions,

D(N) = ng(N_1)7

m>2

(50)

for not-too-large values of N. For asymptotically large val-
ues of N, we have to study the analytic structure of F'(x).
Since this function is analytic for finite , D(N) must in-
crease with N slower than N!. On the other hand, D(N)
increases faster than ¢ for any finite ¢, which is reasonable
since as N grows, larger and larger values of m come into
play. This is also evident from the fact that the standard
Borel transform of the series F(x),
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1.5+

1.24

10 20 40 60 80 100
Fig. 3. The ratio log(N)/ NV

D(N)/D(N-1) as a function of N
for 3 < N <100

/dy eV F(xy)
0

1 oo
= — +/dy exp (—y +e™ —1+ay), (51)
0

1—2x

does not converge for any positive value of z. Figure 3
shows the behavior of the ratio

log(N)/N
D(N)/D(N - 1)

as a function of N for 3 < N < 100. For high N, this ratio
is approximately (but not quite) a constant.

5.3 Complexity in one and two loops

Consider a general theory with m-point vertices. Each
subamplitude of level n (containing n specific external
momenta), can be constructed by combining 2- or more
lower-level subamplitudes in a 3- or more-point vertex.
When using an (m + 1)-point vertex the subamplitude is

Table 13. Number of decompositions, D(N) = > gm(N — 1),

for not-too-large values of N m=2
N D(N) N D(N)
3 1 8 4,012
4 7 9 20,891
5 36 10 115,460
6 171 11 677,550
7 813 12 4,211,549
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built by m lower-level subamplitudes and the number of
different ways for this to happen is given by (44).

Each term in the series represents the number of ways
to construct the subamplitude of level n using subam-
plitudes of level nq,...,n,,. The computational cost of
each such subamplitude involves (assuming that there is
an m + 1-vertex in the theory) contributions from the fol-
lowing possibilities: All lower subamplitudes are free of loop
corrections and the vertex is an ordinary one (this gives
the tree level subamplitude)®. It can also be that one of
the subamplitudes contains already a loop correction (this
occurred in previous steps in the C.M. algorithm) and the
vertex is an ordinary one (see (52)). The subamplitudes
containing loop corrections can, however, be of level 2 or
higher since the level one subamplitudes are the external
legs which we consider amputated. There are, therefore,
m—> . 01,n, different possibilities. Finally there is the case
that all subamplitudes are free of loop corrections but the
vertex is actually a loop (see the last term in (52)). The
number of different possibilities is now equal to the number
of 1PI diagrams with one loop and m + 1 legs, which we
denote by Jy, 1.

The cost of computing the specific subamplitude via
an m + 1-vertex is therefore

1 n!

— (V. (1 — S1m Tl
m! nl,,z;mm!m!...nm!( ( +m zl: 1, l>_|_ 71>
>

(53)
where we have included a factor V,,, = 1 if the m + 1-
vertex is in the theory and V,,, = 0 if not. The cost of the
subamplitude is then found by summing over m. There

are % different subamplitudes. The computational

cost of the whole algorithm in units of effective vertices
is then

K &1
2 <n) 2 m! (54)
n=2 m>2
X Z M(Vm<l+m_zélm>+aﬁn>,
nyamm .

S ni=n

where K = N — 1. In Table 14 we present the results for
the four test theories.

5 That is, provided that the lower-level subamplitudes exist!
This always happens when the theory involves (? interactions.
In the pure p* theory, however, we have to modify the calcu-
lation to exclude combinations where one of the n;’s is equal
to 2 since in such a theory there are no level 2 subamplitudes.
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Table 14. Results from (54)

4

3 p* W+ effective
N=1 0 0 0 0
N =2 0 0 0
N=3 2 0 5 6
N =4 18 4 46 57
N=5 114 0 340 442
N =6 720 105 2,715 3,713
N=7 5,368 0 26,346 37,411
N =28 49,686 3,395 315,035 459,056
N=9 553,766 0 4,474,868 6,688,320
N =10 7,112,700 149,140 72,741,355 112,139,709

Table 15. Results after adding the number of 1PI graphs with
two loops and m + 1 legs, Jm 2

¢’ v

N=1 0 0
N =2 0 0
N=3 9 0
N =14 102 16
N=5 957 0
N=6 9,740 610
N=7 114,677 0
N=38 1,546,986 32,151
N=9 23,395,461 0
N =10 390,310,512 2,574,670
@+ ¢ effective

N=1 0 0
N =2 0 0
N=3 45 68
N =4 566 857
N=5 6,414 9,837
N=6 81,560 127,451
N=T 1,201,556 1,920,824
N=38 20,211,345 33,181,094
N=9 380,938,056 644,468,452
N =10 7,929,937,496 13,861,514,611

In order to include the 2-loop correction one has to add
to the above formula aterm (m — > 01 ;) (m — > 6y, — 1)
for the possibility that two of the lower subamplitudes
have a 1-loop correction and a term equal to m — > 01 p,
for the possibility that one of the subamplitudes has a 2-
loop correction. There is also the possibility that one of
the lower subamplitudes is of 1-loop order and the ver-
tex itself is a 1-loop 1PI graph. This costs an extra term
Jm (m — 3" 61,n,). Moreover one has to add the number
of 1PI graphs with two loops and m + 1 legs, J,, 2. Hence
we now have, writing S,, = >, 1 .n,,

z()mgm, >

LSRR

Zn,—n

AT BEO),
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Table 16. Ratios for a calculation in tree, tree plus 1-loop,
and tree plus 1- and 2-loop level

complexity of C.M. algorithm /

number of diagrams
3

©
Lo Lo+Li Lo+ Li+ L2
N=3 1.00 1.000 1.500
N =4 2.00 1.200 1.307
N=5 1.666 0.864 0.955
N=6 0.857 0.516 0.679
N=7 0.318 0.309 0.498
N =28 0.093 0.199 0.375
N=9 0.022 0.136 0.286
N =10 0.005 0.095 0.220
o
Lo Lo+Li Lo+ Li+ Lo
N=3 — - -
N =4 1.000 1.000 1.231
N=5 - - -
N =6 2.00 1.235 1.119
N=T7 — - -
N=38 1.575 0.858 0.819
N=9 - — -
N =10 0.636 0.468 0.584
o+ ot
Lo Lo+ Ly Lo+ L1+ Lo
N=3 1.000 1.000 1.363
N =4 1.500 1.070 1.132
N=5 1.00 0.736 0.828
N=6 0.409 0.451 0.605
N=7 0.121 0.283 0.454
N =28 0.028 0.190 0.347
N=9 0.005 0.132 0.268
N =10 0.001 0.094 0.208
effective
Lo Lo+Li Lo+ Li+ Lo
N=3 1.000 1.200 1.619
N =4 1.500 1.212 1.325
N=5 0.961 0.837 0.956
N =6 0.381 0.519 0.691
N=17 0.109 0.327 0.515
N=38 0.025 0.217 0.392
N=9 0.005 0.150 0.302
N =10 0.001 0.107 0.234
where K = N — 1 and
A=V,(1+m-—25,,
B = Jm71 + Jm,l(m — SnL),
C = Jne.



470

The results for the four test cases are presented in Ta-
ble 15.

One should be aware of the fact that the above results
are obtained under the assumption that the computational
cost for every effective vertex that might include 1- or 2-loop
1PI graphs is the same.

6 Comparison of the complexity of the C.M.
algorithm to the diagrammatic approach

We present below the ratio of the computational complexity
of the C.M. algorithm over the number of diagrams one
has to calculate in the customary diagrammatic approach,
for our four test theories”. For each case the ratio for a
calculation in tree, tree plus 1-loop, and tree plus 1- and
2-loop level is presented in Table 16.

One should note that the C.M. algorithm will actu-
ally perform better than depicted by the above numbers,
when compared with the straightforward diagrammatic ap-
proach, since we consider the cost of a step in the C.M.
algorithm (i.e. the calculation of a subamplitude which
corresponds to the calculation of an effective vertex) equal
to the cost of the computation of a whole diagram. That
is the reason for the apparently poor performance of the
C.M. algorithm in the case of tree level ¢* theory.

" Only amputated, tadpole/seagull-free diagrams are consid-
ered.

E. van Eijk et al.: Counting loop diagrams: computational complexity of higher-order amplitude evaluation

We, therefore, conclude that the Caravaglios—Moretti
algorithm is more effective than the straightforward dia-
grammatic approach, in the tree as well as the 1- and 2-loop
level, by a factor that increases rapidly with the number
of external legs, even though this increase is less rapid in
the 1- and 2-loop level than in tree level.
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